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Abstract. This paper proposes a multi-objective genetic algorithm to
optimize a manipulator trajectory. The planner has several objectives
namely the minimization of the space and join arm displacements and
the energy required in the trajectory, without colliding with any obstacles
in the workspace. Simulations results are presented for robots with two
and three degrees of freedom, considering the optimization of two and
three objectives.

1 Introduction

In the last decade genetic algorithms (GAs) have been applied in a plethora of
fields such as in control, system identification, robotics, planning and scheduling,
image processing, pattern recognition and speech recognition [1]. This paper
addresses the planning of trajectories, that is, the development of an algorithm
to find a continuous motion that takes the manipulator from a given starting
configuration to a desired end position in the workspace without collision with
any obstacle.

Several single-objective methods for trajectory planning, collision avoidance
and manipulator structure definition have been proposed. A possible approach
consists in adopting the differential inverse kinematics, using the Jacobian ma-
trix, for generating the manipulator trajectories [2, 3]. However, the algorithm
must take into account the problem of kinematic singularities that may be hard
to tackle. To avoid this problem, other algorithms for the trajectory generation
are based on the direct kinematics [4–8].

Chen and Zalzala [2] propose a GA method to generate the position and the
configuration of a mobile manipulator. The authors study the optimization of the
least torque norm, the manipulability, the torque distribution and the obstacle
avoidance, through the inverse kinematics scheme. Davidor [3] also applies GAs
to the trajectory generation by searching the inverse kinematics solutions to pre
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defined end effector robot paths. Kubota et al. [4] study a hierarchical trajec-
tory planning method for a redundant manipulator with a virus-evolutionary GA

running simultaneously, two processes. One process calculates some manipulator
collision-free positions and the other generates a collision free trajectory by com-
bining these intermediate positions. Rana and Zalzala [5] developed a method to
plan a near time-optimal, collision-free, motion in the case of multi-arm manipu-
lators. The planning is carried out in the joint space and the path is represented
as a string of via-points connected through cubic splines. Chocron and Bidaud
[9] proposes an evolutionary algorithm to perform a task-based design of modu-
lar robotic systems. The system consists in a mobile base and an arm that may
be built with serially assembled links and joints modules. The optimization de-
sign is evaluated with geometric and kinematic performance measures. Kim and
Khosha [10] presents the design of a manipulator that is best suited for a given
task. The design consists of determining the trajectory and the length of a three
degrees of freedom (dof ) manipulator. Han et al [11] describe a design method
of a modular manipulator that uses the kinematic equations to determine the
robot configuration and, in a second phase, adopts a GA to find the optimal
length.

Multi-objective techniques using GAs have been increasing in relevance as
a research area. In 1989, Goldberg [12] suggested the use of a GA to solve
multi-objective problems and since then other investigators have been devel-
oping new methods, such as multi-objective genetic algorithm (MOGA) [13],
non-dominated sorted genetic algorithm (NSGA) [14] and niched Pareto genetic
algorithm (NPGA) [15], among many other variants [16].

In this line of thought, this paper proposes the use of a multi-objective
method to optimize a manipulator trajectory. This method is based on a GA

adopting the direct kinematics. The optimal manipulator front is one that mini-
mizes both the path trajectory length and the energy required to perform a task,
without any collision with the obstacles in the workspace. Following this intro-
duction, the paper is organized as follows: section 2 formulates the problem and
the GA-based method for its resolution. Section 3 presents several simulations
results involving different robots, objectives and workspace settings. Finally, sec-
tion 4 outlines the main conclusions.

2 Problem and algorithm formulation

This study considers robotic manipulators that are required to move from an
initial point up to a given final configuration. In the experiments are used two
and three dof planar manipulators (i.e. 2R and 3R robots) with link lengths of
one meter and rotational joints free to rotate 2π rad. To test a possible collision
between the manipulator and the obstacles, the arm structure is checked in order
to verify if it is inside any obstacle. The trajectory consists in a set of strings
representing the joint positions between the initial and final robot configurations.
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2.1 Representation

The path for a iR manipulator (i = 2, 3), at generation T , is directly encoded
as vectors in the joint space to be used by the GA as:

[{q(∆t,T )
1 , .., q

(∆t,T )
i }, {q(2∆t,T )

1 , .., q
(2∆t,T )
i }, .., {q((n−2)∆t,T )

1 , .., q
((n−2)∆t,T )
i }]

(1)
where i is the number of dof and ∆t the sampling time between two consecutive
configurations.

The values of joints q
(j∆t,0)
l (j = 1, . . . , n − 2; l = 1, . . . , i) are randomly

initialized in the range ] − π,+π] rad. It should be noted that the initial and
final configurations have not been encoded into the string because they remain
unchanged throughout the trajectory search. Without losing generality, for sim-
plicity, it is adopted a normalized time of ∆t = 0.1 sec, because it is always
possible to perform a time re-scaling.

2.2 Operators in the multi-objective genetic algorithm

The initial population of strings is generated at random. The search is then
carried out among these populations. The three different operators used in the
genetic planning are selection, crossover and mutation, as described in the sequel.

In what concerns the selection operator, the successive generations of new
strings are reproduced on the basis of a Pareto ranking [12] with σshare = 0.01
and α = 2. To promote population diversity the count metric is used. This
metric uses all solutions in the population independently of their rank to evaluate
every fitness function. For the crossover operator it is used the simulated binary
crossover (SBX )[14]. After crossover, the best solutions (among the parents and
children) are chosen to form the next population. The mutation operator replaces
one gene value with a given probability using the equation:

q
(j∆t,T+1)
i = q

(j∆t,T )
i + N(0, 1/

√
2π) (2)

at generation T , where N(µ, σ) is the normal distribution function with average
µ and standard deviation σ.

2.3 Evolution criteria

Three indices {q, p, Ea} (3) are used to qualify the evolving trajectory robotic
manipulators. Some of these criteria are used by the planner to find the op-
timal Pareto front. Before evaluating any solutions all the values such that

|q(j+1,T )
i − q

(j,T )
i | > π are eliminated from the strings.

q =

n∑

j=1

i∑

l=1

(
q̇
(j∆t,T )
l

)2

(3a)
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p =

n∑

j=2

d (pj , pj−1)
2

(3b)

Ea = (n − 1)T Pa =

n∑

j=1

i∑

l=1

|τl.∆q
(j∆t,T )
l | (3c)

The joint distance q (3a) is used to minimize the joints manipulator traveling
distance. For a function y = g(x) the curve length is ∫ [1 + (dg/dt)2]dx and,
consequently, to minimize the distance curve length it is adopted the simplified
expression ∫(dg/dt)2dx. The cartesian distance p (3b) minimizes the total arm
trajectory length, from the initial point up to the final point, where pj is the
robot j intermediate arm cartesian position and d(·, ·) is a function that gives
the distance between the two arguments. Finally, the energy in expression Ea

(3c), where τl are the robot joint torques, is computed assuming that power
regeneration is not available by motors doing negative work, that is, by taking
the absolute value of the power.

3 Simulation results

In this section results of various experiments are presented. In this line of
thought, subsections 3.1 and 3.2 show the optimization of trajectories for the
2R and 3R robots respectively, for two objectives (2D). Finally, subsection 3.3
shows the results of a three dimensional (3D) optimization for a 2R robot.

3.1 2R Robot trajectory with 2D optimization

The experiments consist on moving a 2R robotic arm from the starting con-
figuration defined by the joint coordinates A ≡ {−1.149, 1.808} rad up to the
final configuration B ≡ {1.181, 1.466} rad in a workspace without obstacles. The
objectives used in this section are joint distance q (3a) and cartesian distance p
(3b).

The simulations results achieved by the GA, with a Tt = 15000 generations
and popsize = 300 strings, converge to two optimal fronts. One of the fronts (fig.
1(a)) corresponds to the movement of the manipulator around its base in the
clockwise direction. The other front (fig. 1(b)) is obtained when the manipulator
moves in the counterclockwise direction. The solutions a and b represent the best
solution found for a given objective.

In 71.4% of the total number of runs the algorithm the Pareto optimal front
was found. In all simulations of the two cases the solutions converged to a front
type which can be modelled approximately by the equation (κ, α, β ∈ R):

p(q) = κ
q + α

q + β
(4)

The achieved median, average and standard variation for the parameters κ,
α and β of (4) are shown in table 1, both for the Pareto optimal and local fronts.
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Table 1. Statistics of the fronts parameters

Pareto front Local front
κ α β κ α β

Median 77.80 −66.31 −70.74 82.50 34.73 −173.02
Average 77.76 −66.16 −70.71 83.27 29.88 −173.09
Standard Deviation 0.53 1.05 0.70 2.63 20.87 3.41

To study the diversity of the front solution, the approximated front was split
into several intervals, limited by normal straight lines rm (fig. 2), such that
the front length is identical for all intervals. For any two consecutive normal
straight lines is associated an interval Im (m = 1, . . . , 19), and the solutions
located between these lines are counted. Figure 3 shows the solution distribution
achieved by one simulation run. From the chart, it can be seen that the solutions
are distributed by all intervals. However, the distribution is not uniform. This
is due to the use of a sharing function in the parameter domain in spite of the
objective domain. Moreover, the algorithm does not incorporate any mechanism
to promote the development of well distributed solutions in the objective domain.

The results obtained for solutions a and b, of the Pareto optimal front in
figure 1(a), are presented in figures 4 to 6. Comparing figures 4(a) and 6(a) with
figures 4(b) and 6(b) it is clear that the joint/cartesian distance for the optimal
solutions a and b, respectively, is significantly different due to the objective
considered. Between these extreme optimal solutions several others were found,
that have a intermediate behavior, and which can be selected according with the
importance of each objective.
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Fig. 1. Optimal fronts for the 2R robot



224 Solteiro Pires et al.

r1

r2

r3

rM

p(q)

p

q

Fig. 2. Normal straight lines to the front obtained with p(q) function

Interval

N
u
m

b
e
r

o
f
so

lu
ti

o
n
s

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20

10

15

20

25

30

35

40

45

50

0

5

Dominated solutions

Pareto optimal solutions

Fig. 3. Solution distribution achieved in one experiment for the 2R robot

3.2 3R Robot trajectory with 2D optimization

In this subsection a 3R robot trajectory is optimized in a workspace which
may include a circle obstacle with center at (x, y) = (2, 2) and radius ρ =
1. The initial and final configurations are A ≡ {−1.15, 1.81,−0.50} rad and
B ≡ {1.18, 1.47, 0.50} rad, respectively. The Tt and popsize parameters used are
identical to those adopted in the previous subsection. The trajectories witch
collide with the obstacle are assigned a very high fitness value.

For an optimization without any obstacle in the workspace is obtained the
f2 = âb front (fig. 7). However, when the obstacle is introduced the front is

reduced to the f1 = ĉd. Thus, only the objective q if affected by the introduction
of the obstacle (figures 8 and 9). The solutions a to d represent the best solution
found for a given objective experiment.

3.3 2R Robot trajectory with 3D optimization

Here, the 2R manipulator trajectory is optimized considering three objectives,
namely the joint distance, the cartesian distance and the energy required by the
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Fig. 4. Successive 2R robot configurations
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Fig. 5. Joint positions versus time for the 2R robot

manipulator to perform the task. Figure 10(a) shows the optimization results
achieved with Tt = 30000 generations and popsize = 600 string.

Figure 10 shows the {q, p}, {q, Ea} and {p,Ea} planner projections of the
3D optimization. Additionally, in each figure is included the correspondeding 2D
optimization obtained previously.

4 Summary and conclusions

A multi-objective GA robot trajectory planner, based on the kinematics, was
proposed. The algorithm is able to reach a determined goal with a reduced ripple
both in the space trajectory and the time evolution. Moreover, any obstacles in
the workspace do not represent a difficulty for the algorithm to reach the solution.
Since the GA uses the direct kinematics the singularities do not constitute a
problem. Furthermore, the algorithm determines the robot non-dominated front
in order to the given objectives, maintaining a good solution distribution along
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Fig. 6. Joint velocities versus time for the 2R robot
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Fig. 7. Pareto optimal fronts, angular distance vs. cartesian distance optimization:
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the front. The results shows that the algorithm reaches the Pareto optimal front
or a very close one.
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